Off Resonance Effects

\[S(t) = \iiint m(x,y) e^{-i \omega (x_{17} + \frac{1}{2} \gamma B_0 (x \cdot x + y \cdot y))} \, dx \, dy \]

1. \(e^{-i \omega t} \) can create phase dispersion within a voxel \(\Rightarrow \) signal gets \(T_2 = 1 T_2^* \)
2. \(e^{-i \omega t} \) contributes phase error over k-space \(\Rightarrow \) distorted image response

\[e^{20 \rho R} \]

\[\text{Key:} \]
\[\text{phase error} = e^{-i \Delta \Phi} \]
\[\text{impulse response} = 0 \text{ not a shift, but a blur} \]

This pencast was created with my Livescribe™ smartpen. Click here to see how to create your own.
But for \(\text{"include dephasing\} \)

\[
S(t) = \iiint m(\vec{r}) e^{-i \int \vec{d}(\vec{r}, t) \cdot d\vec{x}} dt
\]

\(\vec{d}(\vec{r}, t) = \omega_E(\vec{r}) t + \omega_0(\vec{r}) t + \delta \int_0^t \omega_0(\vec{r}) d\tau \cdot \vec{r} \)

\(\text{no control} \)

\(\text{control} \)

inhomogeneous

\[
S(t) = e^{-\frac{t}{T_2}} e^{-\frac{t}{T_{2x}}}
\]

\(\text{gradient inhomogenous} \)

(for a rect object, \(\sigma \) will resemble \(\text{SIC} \))
1) GRADIENT ECHO

\[\phi = \gamma \left(\frac{\Delta}{\gamma} \right) \cdot r \]

Gradient Echo occurs when \(\phi = 0 \quad \forall \, r \)
\[\int \Delta \, dt = 0 \]

GE \quad gradient recalled echo
GRGE \quad gradient reversed echo

- echo "peaks" at the k-space origin

in 2DFT lingo

all considered

a GE even if \(k_y \neq 0 \)
2. Spin Echo (SE)

Ignore $\ddot{\gamma}$

undo dephasing caused by ω_E

-at time t after excitation

$\phi(t, \gamma) = \frac{\omega_E(t) \gamma}{2}$

INEA

use an RF pulse to

flip phases at time γ

180° along x or y

Relative phase after $180^\circ x$

a) $d = 0$

b) $\phi = \omega_E(t) \gamma$

c) $\phi = -\omega_E(t) \gamma$

d) $d = -\omega_E(t) \gamma + \omega_E(t) \gamma = 0$

Signal:

$s(t)$

e^{-t/T_F}

e^{-t/T_2}
180° pulse - spin echo pulse \((M_{xy}) \)

\rightarrow \text{phasereversal}

"pancake dipole pulse"

\rightarrow \text{inversion} \((M_z) \)

180° pulse affects k-space trajectory

\[e^{i\theta} \rightarrow e^{i\theta} \]

before \hspace{1cm} after

\(k_y \)

\(k_x \)

\((k_{x_0}, k_{y_0}) \rightarrow (-k_{x_0}, -k_{y_0}) \)

before \hspace{1cm} after
NOTES

- \(TE \) = gradient echo time \(\int G_x dt = 0 \)
- \(2\gamma \) = spin echo time depends on timing of 90° & 180°
- usually set \(TE = 2\gamma \), max signal
- at \(TE \) signal amplitude \(e^{-\frac{TE}{T_2}} \) int \(T_2^* \)

- **SE** — pure \(T_2 \) weighting, bright signal (\(T_2^* \) pseudodielectric)
- **GE** — faster, no 180° pulse needed — shorter TE possible