B_1 detection of signals

\[\mathbf{M} \]

intercept \mathbf{E}_{MP} in \mathbf{a}

$\mathbf{E}_{\text{MP}} = -\frac{\partial \mathbf{F}}{\partial \mathbf{y}}$

Recived signal called "free induction decay" FID

LAB

Rot. Frame

$S(t)$

depend
\[M \text{ returns to equilibrium as } M_0 \]

- Transverse \(M_{xy} \rightarrow 0 \)
- Longitudinal \(M_z \rightarrow M_0 \)

Both are exponential:

\[T_2 \]
\[T_1 \]

Tissue dependent

Time constant

\[M_{xy}(t) = M_{xy}(0) e^{-t/T_2} \]

\[M_0 - M_z(t) = (M_0 - M_z(0)) e^{-t/T_1} \]

\[M_z(t) = M_z(0) e^{-t/T_1} \]

\[+ \text{ other terms} + M_0 \ 1 - e^{-t/T_1} \]
Relaxation: Why?

\[T_1 = [\text{spin-lattice}] \]

Fluctuating fields, motional of dipole exchange @ \(T_2 \)

100 ms to 5 sec

Paramagnetic agents can shorten it.

6H chelates (often used)

\[T_2 = \text{all of both + spin-spin dephasing phenomenon} \]

After 90° flip \((\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow) \)

\(
\begin{align*}
&\text{a field of neighboring spins} \\
&\text{off resonant condition}
\end{align*}
\)

\(\text{spread in freq and phase at microseconds} \)

\(\text{dephasing} \) \((\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow) \)

This pencast was created with my Livescribe™ smartpen.

Click here to see how to create your own.
$T_1 \sim$ dependent on B_0 (longer at higher B_0)

$T_2 \sim$ largely independent of B_0

solid: $T_2 < 1 \text{ ms}$

liquid: $T_2 \approx T_1 \approx 3 \text{ s}$

Basic NMR experiment

1. RF - excite sample
2. receive signal
3. wait for relaxation

Problem: How do we make an image??

RF sensitive to entire volume

$\begin{align*}
\mathbf{B}(0) & \sim (G_x \mathbf{x} + G_y \mathbf{y} + G_z \mathbf{z}) \cdot \hat{k} \\
G_x &= \frac{dB_z}{dx} \\
|G| &\leq 4 \text{ G/cm} \\
\text{hardware limit} &\leq 40 \text{ MT/m}
\end{align*}$
\[B_z = B_0 + G_x x \]

\[f(x) = \frac{g}{\text{dt}} (B_0 + G_x x) \]

\[= f_0 + \left(\frac{g}{\text{dt}} G_x \right) x \]

CW signal - temporal frequency maps to spatial position

- **x**
 - object \(\Delta x = 2 \text{ cm} \)
 - \(G_x = 0.5 \text{ cm}^{-1} \)

\[\Delta f = \frac{g}{\text{dt}} G_x \Delta x = \frac{1}{12} \text{ Hz} \]

\[\left(4.9 \pi^2 \frac{\text{sec}^2}{\text{cm}^2} \right) \left(0.5 \text{ cm}^{-1} \right) \left(20 \text{ cm} \right) \]

- \(f \) enable selective excitation
 - \(G_z \)

envelope slice/ slab excitation

- \(B_1 \) with an envelope

This pencast was created with my Livescribe™ smartpen. [Click here](#) to see how to create your own.
2D imaging

1. Selectively excite a slice B_1, Gz
2. Record signals $r_{encode x y}$, Cx, Gy
3. Wait for relaxation

RF

Gz

Gy

Cx

DAQ

5-10 ms
1-3 ms

20 ms to 1 sec

288
286