MRI = Magnetic Resonance Imaging

Imaging Modalities

- ?
- X-ray
- ?
- CT
- PET/SPECT
- ?
- Ultrasound

What is being measured?
How is it being measured?
Practical factors?
Computed Tomography (CT)

- **Source**
 - X-ray

- **Detector**

- **\(\mu(x, y, z) \)**
 - Attenuated

- **2D Image**

\[\mu = \text{x-ray attenuation coefficient} \]

\[f(\text{atomic number, electron density}) \]

\[I_d = I_0 e^{-\mu d} \]
- **Line integral**

- **Computed tomography (CT)**

- **Source**
 - X-ray

- **Detector**

- **Slice**

- **Central Section Theorem**
 - Back-projection

Collect 1D projections at all angles can then reconstruct \(\mu(x, y) \)
Nuclear Medicine (SPECT/PER)

Uptake of radio-labelled material (loc based on biochemistry)
collimated or point-like cameras

Images of functional anatomy

First three involve ionizing radiation

Ultrasound

X-ray

Propagate pulse, receive reflections
velocity 1500 m/s in H2O
acoustic reflectivity
i.e. echo time maps to depth

† frequencies \(\rightarrow\) resolution
\(\rightarrow\) attenuation \(\sim (1 \text{ dB/cm}) / \text{MHz}^{1/2}\)
Magnetic Resonance (MR)

- radio frequency field
 - polarizes the sample, creates a resonance condition
 - \(B_0 \): polarizes the sample, creates a resonance condition
 - \(H = \text{hydrogen} \rightarrow \text{tiny magnetic dipole} \)

- gradient field \(G \)
 - spatial localization, encode signals
 - includes tissue properties that influence behavior
 - flow
 - etc...
Comparisons

Toxicity

- Ionizing radiation (C) appears safe
- Neutrons, potential projectiles, neutrons
 - Ha: time varying fields, induce currents
 \[\frac{df}{dt} > 10 \text{T/s} \] - light strokes
 even higher - proprioceptive feedback
 even higher - cardiac stims
 - B, RF heating

Applicability

- Everywhere (no physical boundary) (X)
- Soft tissue / fund path (U)
- Everywhere, best in stationary region b/c long sun time
 not great for adults

Distortion

- No significant distortion. CT ATF near total attenuation (X)
- Refraction, refraction in \(\nabla \) affects depth estimate
 distortion \(k = \text{resolution} \) \(\to \) lateral distortion
 \(\nabla \) RF percutaneous effects \(\to \) intensity variation
 non-linear in B fields \(\to \) geometrical distortions
Physical Parameter

1. μ - linear x-ray attenuation coefficient
2. R - acoustic reflectivity
3. ρ - density of 1H
4. T_1, T_2 - tissue parameters

To be continued