MM74C922 • MM74C923
16-Key Encoder • 20-Key Encoder

General Description
The MM74C922 and MM74C923 CMOS key encoders provide all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have on-chip pull-up devices which permit switches with up to 50 kΩ on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal debounce period; this two-key roll-over is provided between any two switches.

An internal register remembers the last key pressed even after the key is released. The 3-STATE outputs provide for easy expansion and bus operation and are LPTTL compatible.

Features
- 50 kΩ maximum switch on resistance
- On or off chip clock
- On-chip row pull-up devices
- 2 key roll-over
- Keybounce elimination with single capacitor
- Last key register at outputs
- 3-STATE output LPTTL compatible
- Wide supply range: 3V to 15V
- Low power consumption

Ordering Code:

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Package Number</th>
<th>Package Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM74C922WN</td>
<td>M20B</td>
<td>20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide</td>
</tr>
<tr>
<td>MM74C922N</td>
<td>N18B</td>
<td>18-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide</td>
</tr>
<tr>
<td>MM74C923WN</td>
<td>M20B</td>
<td>20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide</td>
</tr>
<tr>
<td>MM74C923N</td>
<td>N20A</td>
<td>20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide</td>
</tr>
</tbody>
</table>

*Device also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering code.

Connection Diagrams

Pin Assignment for DIP

Pin Assignment for SOIC

© 2001 Fairchild Semiconductor Corporation DS006037 www.fairchildsemi.com
Pin Assignment for DIP and SOIC Package

Truth Tables
(Pins 0 through 11)

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Y1, X1</th>
<th>Y1, X2</th>
<th>Y1, X3</th>
<th>Y1, X4</th>
<th>Y2, X1</th>
<th>Y2, X2</th>
<th>Y2, X3</th>
<th>Y2, X4</th>
<th>Y3, X1</th>
<th>Y3, X2</th>
<th>Y3, X3</th>
<th>Y3, X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>T B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>U E (Note 1)</td>
<td>0</td>
</tr>
</tbody>
</table>

Truth Tables
(Pins 12 through 19)

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Y4, X1</th>
<th>Y4, X2</th>
<th>Y4, X3</th>
<th>Y4, X4</th>
<th>Y5 (Note 1), X1</th>
<th>Y5 (Note 1), X2</th>
<th>Y5 (Note 1), X3</th>
<th>Y5 (Note 1), X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>D A</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>U E (Note 1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Note 1: Omit for MM74C922
Absolute Maximum Ratings (Note 2)

Voltage at Any Pin
\[V_{CC} - 0.3V \text{ to } V_{CC} + 0.3V \]

Operating Temperature Range
MM74C922, MM74C923
-40°C to +85°C

Storage Temperature Range
-65°C to +150°C

Power Dissipation (P_D)
- Dual-In-Line 700 mW
- Small Outline 500 mW

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise specified

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
</table>
| \(V_T^+ \) | Positive-Going Threshold Voltage
 at Osc and KBM Inputs | \(V_{CC} = 5V, I_{IN} \geq 0.7 \) mA
\(V_{CC} = 10V, I_{IN} \geq 1.4 \) mA
\(V_{CC} = 15V, I_{IN} \geq 2.1 \) mA | 3.0 | 3.6 | 4.3 | V |
| \(V_T^- \) | Negative-Going Threshold Voltage
 at Osc and KBM Inputs | \(V_{CC} = 5V, I_{IN} \geq 0.7 \) mA
\(V_{CC} = 10V, I_{IN} \geq 1.4 \) mA
\(V_{CC} = 15V, I_{IN} \geq 2.1 \) mA | 0.7 | 1.4 | 2.0 | V |
| \(V_{IN}(1) \) | Logical “1” Input Voltage,
Except Osc and KBM Inputs | \(V_{CC} = 5V \)
\(V_{CC} = 10V \)
\(V_{CC} = 15V \) | 3.5 | 4.5 | V |
| \(V_{IN}(0) \) | Logical “0” Input Voltage,
Except Osc and KBM Inputs | \(V_{CC} = 5V \)
\(V_{CC} = 10V \)
\(V_{CC} = 15V \) | 0.5 | 1.5 | V |
| \(f_p \) | How Pull-Up Current at Y1, Y2, Y3, Y4 and Y5 Inputs | \(V_{CC} = 5V, V_{IN} = 0.1 V_{CC} \)
\(V_{CC} = 10V \)
\(V_{CC} = 15V \) | -2 | -5 | V |
| \(V_{OUT(1)} \) | Logical “1” Output Voltage | \(V_{CC} = 5V, I_O \geq -10 \) \(\mu A \)
\(V_{CC} = 10V, I_O \geq -10 \) \(\mu A \)
\(V_{CC} = 15V, I_O \geq -10 \) \(\mu A \) | 4.5 | 9 | V |
| \(V_{OUT(0)} \) | Logical “0” Output Voltage | \(V_{CC} = 5V, I_O \geq 10 \) \(\mu A \)
\(V_{CC} = 10V, I_O \geq 10 \) \(\mu A \)
\(V_{CC} = 15V, I_O \geq 10 \) \(\mu A \) | 0.5 | 1 | V |
| \(R_{ON} \) | Column “ON” Resistance at X1, X2, X3 and X4 Outputs | \(V_{CC} = 5V, V_O = 0.5V \)
\(V_{CC} = 10V, V_O = 1V \)
\(V_{CC} = 15V, V_O = 1.5V \) | 500 | 1400 | \(\Omega \) |
| \(I_C \) | Supply Current
Osc at 0V, (one Y low) | \(V_{CC} = 5V \)
\(V_{CC} = 10V \)
\(V_{CC} = 15V \) | 0.55 | 1.1 | mA |
| \(I_{IN(1)} \) | Logical “1” Input Current
at Output Enable | \(V_{CC} = 10V, V_{IN} = 15V \) | 0.005 | 1.0 | \(\mu A \) |
| \(I_{IN(0)} \) | Logical “0” Input Current
at Output Enable | \(V_{CC} = 15V, V_{IN} = 0V \) | -1.0 | -0.005 | \(\mu A \) |

CMOS/LPTTL INTERFACE

| \(V_{IN(1)} \) | Except Osc and KBM Inputs | \(V_{CC} = 4.75V \)
| \(V_{IN(0)} \) | Except Osc and KBM Inputs | \(V_{CC} = 4.75V \)
| \(V_{OUT(1)} \) | Logical “1” Output Voltage | \(I_O \geq -360 \) \(\mu A \)
\(V_{CC} = 4.75V \)
\(I_O \geq -360 \) \(\mu A \) | 2.4 | V |

Note 2: “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. Except for “Operating Temperature Range” they are not meant to imply that the devices should be operated at these limits. The table of “Electrical Characteristics” provides conditions for actual device operation.
DC Electrical Characteristics (Continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{I}_{\text{OUT}(0)}$</td>
<td>Logical '0' Output Voltage</td>
<td>$V_D = -360 \mu A$</td>
<td>$V_{CC} = 4.75V$</td>
<td>-1.75</td>
<td>-3.3</td>
<td>mA</td>
</tr>
<tr>
<td>I_{O}</td>
<td>$V_{CC} = 4.75V$</td>
<td>$I_O = -360 \mu A$</td>
<td>0.4</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OUTPUT DRIVE (See Family Characteristics Data Sheet) (Short Circuit Current)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{SOURCE}</td>
<td>Output Source Current (P-Channel)</td>
<td>$V_{CC} = 5V$, $V_{OUT} = 0V$, $T_A = 25^\circ C$</td>
<td>-1.75</td>
<td>-3.3</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{SOURCE}</td>
<td>Output Source Current (P-Channel)</td>
<td>$V_{CC} = 10V$, $V_{OUT} = 0V$, $T_A = 25^\circ C$</td>
<td>-8</td>
<td>-15</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{SINK}</td>
<td>Output Sink Current (P-Channel)</td>
<td>$V_{CC} = 5V$, $V_{OUT} = V_{CC}$, $T_A = 25^\circ C$</td>
<td>1.75</td>
<td>3.6</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>I_{SINK}</td>
<td>Output Sink Current (P-Channel)</td>
<td>$V_{CC} = 10V$, $V_{OUT} = V_{CC}$, $T_A = 25^\circ C$</td>
<td>8</td>
<td>16</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

AC Electrical Characteristics (Note 3)

$T_A = 25^\circ C$, $C_L = 50 \text{ pF}$, unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{pd0}</td>
<td>Propagation Delay Time to Logical '0' or Logical '1' from D.A.</td>
<td>$C_L = 50 \text{ pF}$ (Figure 1)</td>
<td>$V_{CC} = 5V$</td>
<td>60</td>
<td>150</td>
<td>ns</td>
</tr>
<tr>
<td>t_{pd0}</td>
<td>Propagation Delay Time to Logical '0' or Logical '1' from D.A.</td>
<td>$V_{CC} = 10V$</td>
<td>35</td>
<td>80</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{pd0}</td>
<td>Propagation Delay Time to Logical '0' or Logical '1' from D.A.</td>
<td>$V_{CC} = 15V$</td>
<td>25</td>
<td>60</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{pd1}</td>
<td>Propagation Delay Time from Logical '0' or Logical '1' into High Impedance State</td>
<td>$R_L = 10k$, $C_L = 10 \text{ pF}$ (Figure 2)</td>
<td>$V_{CC} = 5V$, $R_L = 10k$</td>
<td>80</td>
<td>200</td>
<td>ns</td>
</tr>
<tr>
<td>t_{pd1}</td>
<td>Propagation Delay Time from Logical '0' or Logical '1' into High Impedance State</td>
<td>$V_{CC} = 10V$, $C_L = 10 \text{ pF}$</td>
<td>65</td>
<td>150</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{pd1}</td>
<td>Propagation Delay Time from Logical '0' or Logical '1' into High Impedance State</td>
<td>$V_{CC} = 15V$</td>
<td>50</td>
<td>110</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{pd0}</td>
<td>Propagation Delay Time from High Impedance State to a Logical '0' or Logical '1'</td>
<td>$R_L = 10k$, $C_L = 50 \text{ pF}$ (Figure 2)</td>
<td>$V_{CC} = 5V$, $R_L = 10k$</td>
<td>100</td>
<td>250</td>
<td>ns</td>
</tr>
<tr>
<td>t_{pd1}</td>
<td>Propagation Delay Time from High Impedance State to a Logical '0' or Logical '1'</td>
<td>$V_{CC} = 10V$, $C_L = 50 \text{ pF}$</td>
<td>55</td>
<td>125</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>t_{pd1}</td>
<td>Propagation Delay Time from High Impedance State to a Logical '0' or Logical '1'</td>
<td>$V_{CC} = 15V$</td>
<td>40</td>
<td>90</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td>Any Input (Note 4)</td>
<td>5</td>
<td>7.5</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>C_{OUT}</td>
<td>3-STATE Output Capacitance</td>
<td>Any Output (Note 4)</td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 3: AC Parameters are guaranteed by DC correlated testing.

Note 4: Capacitance is guaranteed by periodic testing.
Switching Time Waveforms

\[T_1 \approx T_2 \approx RC, \quad T_3 \approx 0.7 \, RC, \quad \text{where} \quad R \approx 10k \quad \text{and} \quad C \quad \text{is external capacitor at KBM input.} \]

FIGURE 1.

FIGURE 2.
Typical Performance Characteristics

Typical I_{pN} vs V_{IN} at Any Y Input

Typical R_{on} vs V_{OUT} at Any X Output

Typical F_{SCAN} vs C_{OSC}

Typical Debounce Period vs C_{KBM}

Typical Applications

Synchronous Handshake (MM74C922)

The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz.

Synchronous Data Entry Onto Bus (MM74C922)

Outputs are enabled when valid entry is made and go into 3-STATE when key is released.

The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz.
Theory of Operation

The MM74C922/MM74C923 Keyboard Encoders implement all the logic necessary to interface a 16 or 20 SPST key switch matrix to a digital system. The encoder will convert a key switch closer to a 4(MM74C922) or 5(MM74C923) bit nibble. The designer can control both the keyboard scan rate and the key debounce period by altering the oscillator capacitor, C_{OSE}, and the key bounce mask capacitor, C_{MSK}. Thus, the MM74C922/MM74C923's performance can be optimized for many keyboards.

The keyboard encoders connect to a switch matrix that is 4 rows by 4 columns (MM74C922) or 5 rows by 4 columns (MM74C923). When no keys are depressed, the row inputs are pulled high by internal pull-ups and the column outputs sequentially output a logic ‘0’. These outputs are open drain and are therefore low for 25% of the time and otherwise off. The column scan rate is controlled by the oscillator input, which consists of a Schmitt trigger oscillator, a 2-bit counter, and a 2–4-bit decoder.

When a key is depressed, key 0, for example, nothing will happen when the X1 input is off, since Y1 will remain high. When the X1 column is scanned, X1 goes low and Y1 will go low. This disables the counter and keeps X1 low. Y1 going low also initiates the key bounce circuit timing and locks out the other Y inputs. The key code to be output is a combination of the frozen counter value and the decoded Y inputs. Once the key bounce circuit times out, the data is latched, and the Data Available (DAV) output goes high. If, during the key closure the switch bounces, Y1 input will go high again, restarting the scan and resetting the key bounce circuitry. The key may bounce several times, but as soon as the switch stays low for a debounce period, the closure is assumed valid and the data is latched.

A key may also bounce when it is released. To ensure that the encoder does not recognize this bounce as another key closure, the debounce circuit must time out before another closure is recognized.

The two-key rollover feature can be illustrated by assuming a key is depressed, and then a second key is depressed. Since all scanning has stopped, and all other Y inputs are disabled, the second key is not recognized until the first key is lifted and the key bounce circuitry has reset. The output latches feed 3-STATE, which is enabled when the Output Enable (OE) input is taken low.
Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
Package Number M20B
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:
A. CONFORMS TO JEDEC REGISTRATION MS-001.
B. CONTROLLING DIMENSIONS ARE IN INCHES.
C. REFERENCE DIMENSIONS ARE IN MILLIMETERS.
D. DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
E. DOES NOT INCLUDE DAMBAR PROTRUSIONS.

18-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N18B
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com