General Purpose Plastic Rectifier

FEATURES
- Low forward voltage drop
- Low leakage current
- High forward surge capability
- Solder dip 275 °C max. 10 s, per JESD 22-B106
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

TYPICAL APPLICATIONS
For use in general purpose rectification of power supplies, inverters, converters and freewheeling diodes application.

Note
- These devices are not AEC-Q101 qualified.

MECHANICAL DATA
Case: DO-201AD, molded epoxy body
Molding compound meets UL 94 V-0 flammability rating
Base P/N-E3 - RoHS compliant, commercial grade
Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102
E3 suffix meets JESD 201 class 1A whisker test
Polarity: Color band denotes cathode end

PRIMARY CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>1N5400</th>
<th>1N5401</th>
<th>1N5402</th>
<th>1N5403</th>
<th>1N5404</th>
<th>1N5405</th>
<th>1N5406</th>
<th>1N5407</th>
<th>1N5408</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum average rectified current 0.5" (12.5 mm) lead length at TL = 105 °C</td>
<td>$I_{F(AV)}$</td>
<td>50 100 200 300 400 500 600 800 1000</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load</td>
<td>I_{FSM}</td>
<td>35 70 140 210 280 350 420 560 700</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum full load reverse current, full cycle average 0.5" (12.5 mm) lead length at TL = 105 °C</td>
<td>$I_{R(AV)}$</td>
<td>500</td>
<td>μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating junction and storage temperature range</td>
<td>T_J, T_{STG}</td>
<td>-50 to +150</td>
<td>°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM RATINGS ($T_A = 25 °C$ unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>1N5400</th>
<th>1N5401</th>
<th>1N5402</th>
<th>1N5403</th>
<th>1N5404</th>
<th>1N5405</th>
<th>1N5406</th>
<th>1N5407</th>
<th>1N5408</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum repetitive peak reverse voltage</td>
<td>V_{RRM}</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum RMS voltage</td>
<td>V_{RMS}</td>
<td>35</td>
<td>70</td>
<td>140</td>
<td>210</td>
<td>280</td>
<td>350</td>
<td>420</td>
<td>560</td>
<td>700</td>
</tr>
<tr>
<td>Maximum DC blocking voltage</td>
<td>V_{DC}</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum average forward rectified current 0.5" (12.5 mm) lead length at TL = 105 °C</td>
<td>$I_{F(AV)}$</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load</td>
<td>I_{FSM}</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum full load reverse current, full cycle average 0.5" (12.5 mm) lead length at TL = 105 °C</td>
<td>$I_{R(AV)}$</td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating junction and storage temperature range</td>
<td>T_J, T_{STG}</td>
<td>-50 to +150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ELECTRICAL CHARACTERISTICS \((T_A = 25 \, ^\circ\text{C} \text{ unless otherwise noted}) \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>SYMBOL</th>
<th>1N5400</th>
<th>1N5401</th>
<th>1N5402</th>
<th>1N5403</th>
<th>1N5404</th>
<th>1N5405</th>
<th>1N5406</th>
<th>1N5407</th>
<th>1N5408</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum instantaneous forward voltage</td>
<td>3.0 A</td>
<td>(V_F)</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Maximum DC reverse current at rated DC blocking voltage</td>
<td>(T_A = 25 , ^\circ\text{C})</td>
<td>(I_R)</td>
<td>5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\mu\text{A})</td>
</tr>
<tr>
<td></td>
<td>(T_A = 150 , ^\circ\text{C})</td>
<td></td>
<td>500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical junction capacitance</td>
<td>4.0 V, 1 MHz</td>
<td>(C_J)</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\text{pF})</td>
</tr>
</tbody>
</table>

THERMAL CHARACTERISTICS \((T_A = 25 \, ^\circ\text{C} \text{ unless otherwise noted}) \)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>1N5400</th>
<th>1N5401</th>
<th>1N5402</th>
<th>1N5403</th>
<th>1N5404</th>
<th>1N5405</th>
<th>1N5406</th>
<th>1N5407</th>
<th>1N5408</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical thermal resistance (R_{\text{JA}}) ((1))</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(^\circ\text{C}/\text{W})</td>
</tr>
</tbody>
</table>

Note

\((1) \) Thermal resistance from junction to ambient at 0.375" (9.5 mm) lead length, P.C.B. mounted with 0.8" x 0.8" (20 mm x 20 mm) copper heatsinks

ORDERING INFORMATION (Example)

<table>
<thead>
<tr>
<th>PREFERRED P/N</th>
<th>UNIT WEIGHT (g)</th>
<th>PREFERRED PACKAGE CODE</th>
<th>BASE QUANTITY</th>
<th>DELIVERY MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N5404-E3/54</td>
<td>1.1</td>
<td>54</td>
<td>1400</td>
<td>13" diameter paper tape and reel</td>
</tr>
<tr>
<td>1N5404-E3/73</td>
<td>1.1</td>
<td>73</td>
<td>1000</td>
<td>Ammo pack packaging</td>
</tr>
</tbody>
</table>

RATINGS AND CHARACTERISTICS CURVES \((T_A = 25 \, ^\circ\text{C} \text{ unless otherwise noted}) \)

Fig. 1 - Forward Current Derating Curve

Fig. 2 - Maximum Non-Repetitive Peak Forward Surge Current
Fig. 3 - Typical Instantaneous Forward Characteristics

Fig. 4 - Typical Reverse Characteristics

Fig. 5 - Typical Junction Capacitance

Fig. 6 - Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

DO-201AD
Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.